y

Audio Units and Audio Codecs

Session 508

y

Audio Units and Audio Codecs

Craig Keithley
USB and FireWire Technology Evangelist

s

Audio Codecs

Jeff Moore
Core Audio Engineering

Introduction

* Audio Codecs provide a plug-in mechanism
for encoding and decoding audio data

* Audio Codecs are Components

* [n Jaguar, the Audio Converter will use Audio
Codecs as a user-extensible mechanism

Kinds of Audio Codecs

* There are three kinds of Audio Codecs

» Encoders (‘aenc’) transform linear PCM data
into another format

» Decoders (‘adec’) transform other formats
into linear PCM

» Unity codecs (‘acdc’) transform
between variants of the same format
(e.g., a sample rate converter)

Audio Codec Discovery

* Audio Codecs are discovered like other
components using Component Manager routines

FindNextComponent

* Component, once found, is opened
OpenAComponent

* The Component is closed when you are done

CloseComponent

Audio Codec Properties

* Properties provide a means to configure the
transformation performed by an Audio Codec

* The value of a property is an untyped block
of memory whose contents are specified
by the property’s ID

Audio Codec Properties

* Important properties:
kAudioCodecPropertyRequiresPacketDescription
kAudioCodecPropertyPacketFrameSize
kAudioCodecPropertyHasVariablePacketByteSizes
kAudioCodecPropertyMaximumPacketByteSize

Audio Codec Properties

* Important properties:
kAudioCodecPropertyCurrentinputFormat
kAudioCodecPropertyCurrentOutputFormat
kAudioCodecPropertyMagicCookie

Audio Codec States

* Audio Codecs can be in two states, uninitialized
and initialized

* AudioCodeclnitialize and AudioCodecUninitialize
move between the states

e The state transition is when the codec allocates/
releases any resources it needs like buffers
and tables

Audio Codec States

* When the codec is initialized, the parameters

of t|
*Pro

ne transformation cannot be changed
perties that depend on the configuration

of tl
size

ne codec, like the maximum packet byte
, are only valid when the codec is initialized

Audio Codec Data Flow

* Audio Codecs uses a “push then pull” model
for data flow

* Input data is provided using
AudioCodecAppendinputData

» Input data is copied into an internal buffer

e The codec will return how much data
it consumes

» The data must be in full packets if packet
descriptions are required

Audio Codec Data Flow

* Qutput data is produced using
AudioCodecProduceOutputPackets

» Output is always in full packets of data

» A status code is returned indicating how
much of the request could be satisfied

AudioCodec SDK

* A C+ + class library for implementing
Audio Codec components

s

-
Demo

Audio Codec SDK

s

Audio Units

Doug Wyatt
Core Audio Engineering

Introduction: Audio Units

* Functionality and packaging
* Writing an Audio Unit

* Writing an Audio Unit View

Audio Unit Functionality

* Audio signal-processing plug-in
* Optional user interface (view) plug-in

* Any number of input and output
connections (busses)

* Pull model allows complex graphs
(see AUGraph)

* Operates on 32-bit floating point buffers

Audio Unit Packaging

* Component bundle
o (Can contain resources

* Discover
FindNextComponent

*Open
OpenAComponent

*Close
CloseComponent

First Steps

* Determine numbers of input and output busses
* Each bus can be mono or multi-channel
» 10.1 (current): Interleaved

o Version 2, multi-channel busses
are deinterleaved

* Choose an appropriate C base class
from the SDK

SDK Class Hierarchy

AUBase
; vI 1
AUEffectBase AUConverterBase MusicDeviceBase
I I
\ 4 \ 4

AUlnlineEffectBase AUOutputBase

AUBase

AUBase —p AUScope == AUElement

* Translates component entry selectors and get/set
property calls into C+ + virtual methods

* Manages scopes (input, output, global)
and elements

* Handles a significant amount of other
housekeeping

AUEfttectBase

AUBase

\ 4
AUEffectBase —» AUKernelBase

* 1 bus (element) in, 1 bus out, each with same
number of channels

* Creates a “kernel” object per channel

* Default Render() implementation calls kernels

to process in mono for each channel i

AUlnlineEftectBase

AUBase

\ 4
AUEffectBase —» AUKernelBase
|

\ 4
AUlnlineEffectBase

* Use this if your DSP can operate on samples
in place

» Provides cache efficiency

AUConverterBase

AUBase
\4

AUConverterBase — AudioConverter

* Typical uses

» Sample rate conversion
» Interleaving/deinterleaving

e Channel map

ning

AUOutputBase

AUBase

\ 4
AUConverterBase

A 4
AUOutputBase

* Used for terminal nodes in graphs
» E.g.. hardware output units, file writers
* Supports Start and Stop methods

* Provides format conversion between a canonical
float format and a hardware or file format &

MusicDeviceBase

AUBase

\ 4
MusicDeviceBase

* Implements Music Device selectors

« MIDI events

» Extended note and control events
* Renders audio output like any other AudioUnit
* Use for soft synths

’

AUElement

AUBase

* Audio Unit AP]

=P AUScope ===p AUElement

 refers to elements within scopes

* Managed by A

UBase, but you can subclass them

to store state per input/output
* Manages parameters and stream formats

AUInputElement

AUElement

[
A 4

AUlnputElement

* Obtains input from upstream Audio Unit
or a client callback function

AUOutputElement

AUElement

[
A 4

AUOutputElement

* Maintains buffers for caching output
(to support fan-out connections)

s

-
Demo

Writing an Effect

AudioUnit V2

* Component description changes

* Different data structure passed
in rendering process

Component

Description Differences

*V1 (10.1)
e ‘aunt’ component type, and multiple
required subtypes

*V?2
» Multiple component types:
e ‘aufx’, ‘auou’, ‘aumd’
» Leaves manufacturer and sub-type available

for your use
e May have recommendations for sub-type usage

¢

Differences in Rendering

*V1]
» Interleaved buffers for multichannel streams,
in AudioBuffer structure
*V?2
» Deinterleaved buffers, in AudioBufferList
« AudioBufferList contains N AudioBuffers

e Affects:
e RenderSlice becomes Render

» Render notification and input procs change
accordingly

Deinterleaved—Why?

*You asked, we listened

* Much existing DSP code uses deinterleaved buffers
* Improved cache efficiency for many algorithms

* Simpler to optimize for multichannel
and complex signal chain assembly

Implications of Changes—AUs

* Do not feel compelled to support V1 API

 New Apple units after Jaguar will only
be published with new component types

* To support both V1 and V2 in your AudioUnit,
use component aliases to have two component
descriptions

» AUEffectBase and AUConverterBase provide
support for both APIs

« Other AUBase subclasses need to do more
work to support both

Implications of Changes—Clients

* Can not mix V1 and V2 types in a graph

 Would get stream format mismatc.

1CS

* Client API changes to use AudioBufferList

instead of AudioBuffer

» AudioUnitRender replaces
AudioUnitRenderSlice

» Render and input callbacks have different

signatures

AudioUnitCarbonView

* UI for an Audio Unit
* Also a component; Apple supplies generic view

* Audio Unit can specify, via a property, one or
more view components that know how to
control it

* Creates a Carbon user pane
» Can contain controls or a custom Ul
» Uses Carbon Events
* Here too we supply a small C+ + framework

’

AudioUnitCocoaView?

*We are working on it, but post-Jaguar

* Tricky issues of invoking Carbon views
from Cocoa and vice versa

» Want to make this transparent to the app

AUCarbonViewBase

* Handles the single-selector component interface:

AudioUnitCarbonViewCreate(
AudioUnitCarbonView inView,

AudioUnit inAudioUnit,
WindowRef inWindow,
ControlRef inParentControl,

const Float32Point * inLocation,
const Float32Point * inSize,
ControlRef * outControl);

* Manages binding of controls to parameters

Parameter Listeners

* Mechanism for receiving notifications
when Audio Unit parameter values change

e AUParameterListener

* Call AUParameterSet instead
of AudioUnitSetParameter

* One listener can listen to multiple parameters
* See AudioToolbox/AudioUnitUtilities.h

s

-
Demo

Writing An AudioUnitCarbonView

Conclusion

* SDK base classes will support both versions
of the API

e S0 NO reason not to start writing
AudioUnits now

* Thanks for your feedback; please continue

Roadmap

502 Core Audio Technologies Room J
Tue., 2:00pm
507 Audio and MIDI: Room J
Using the Audio HAL and Core MIDI Services ~ Wed., 3:30pm
FF014 Audio and MIDI: Room J
Question and Answer Forum Fri., 3:30pm
607 QUiCkTime and MPEG'4: Room A2

Short Overview of AAC

Fri., 3:30pm

Who to Contact

Craig Keithley

USB and FireWire Technology Evangelist
Keithley@apple.com

’

http://developer.apple.com/wwdc2002/urls.html .

For More Information

* Core Audio Developer Services
* Mailing List—Core Audio API

http://lists.apple.com/

*SDKs

http://developer.apple.com/audio/

Craig Keithley
USB & FireWire Technology Evangelist
keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

